Calculation of effective space charge of irradiated Si detectors **Comparing simulations with measurements**

<u>Urban Senica</u>

CERN, Route de Meyrin 385, 1217 Meyrin, Switzerland

Marcos Fernández

IFCA: Instituto de Física de Cantabria IFCA-CSIC-UC, Ed. Juan Jordá, Avda. Los Castros s/n, 39005 Santander, (Spain)

depth.

Development of a **fast simulator** of **non-irradiated** and **irradiated** silicon (Si) microstrip **detectors**. Detector parameters (effective space charge, trapping time...) extracted **fitting** simulation to real data.

RD50 collaboration's main activity is the development of **silicon detectors** for the **HL-LHC** upgrade. The study of **irradiated** detectors plays a crucial role in designing new devices, adapted to increased particle fluences. Simulations, in combination with measurements, provide valuable insight into the detectors' behaviour.

Si microstrip detectors

Usually around 300 µm thick, these **segmented** devices are used as tra-

ckers in particle physics experiments. When a

<u>Transient Current Techniques study the transient current pulses</u> induced by the moving charge carriers in the electric field of the detector.

In conventional TCT, a pico-second **laser pulse** is injected either form the top or bottom part of the device and generates free charge carriers. In edge-TCT, the pulse is injected from the side, enabling **depth-dependant** measurements. The shape of the measured transients is directly connected to the electric field inside the detector.

particle crosses the detector, it generates free charge carriers (e- and h+), which are collected in the strips to produce a signal. The device operates in **reverse bias** mode to ensure a minimum quantity of free carriers in the bulk (depleted region). The **effective space charge** (**Neff**) in the bulk is constant in unirradiated detectors, resulting in a **linear electric field**. During operation, detectors are exposed to radiation, causing several (undesired) effects and changing the device's characteristics. Irradiated detectors can be parameterised using a trilinear Neff, resulting in a parabolic electric field.

To Analog Readout

TRACS

An open-source TRAnsient Current Simulator developed at CERN, implementing Ramo's **theorem** using finite element methods (**FEM**) to calculate **induced transient currents**. TRACS accepts arbitrary charge carrier distributions as input. It can simulate **microstrips** and simple **diodes**. For irradiated detectors the user needs to specify a Neff(z) profile and an effective trapping constant. **GUI** (graphical user interface) and **CLI** (command line) versions available (https://github.com/IFCA-HEP/TRACS).

step

İS

a

Parameter extraction

next

Parallelization of TRACS

To **speed up** the simulation, I implemented multithreading, which is especially effective on multi-core machines. The "z" input coordinates of a (z, y, V) scan are split into N parts and the simulation runs independently in each of the N threads. A simple comparison of execution times is in Fig. 3.

The

comparison of measured and simulated transient currents. The goal is to compute a χ^2 minimization using MINUIT software minimizer and extract the effective space A simulation with charge. and 4 threads minutes. If we we need to run minimizations, that amounts roughly to 225 hours (9.4 days). This may seem a long time, however

I thank my supervisors Marcos Fernández and Michael Moll and the rest of the Solid State Detectors team.

Urban.Senica@cern.ch

Summer Students Poster Session **3rd August 2016, CERN, Geneva, Switzerland**